在手机客户端尤其是Android应用的开发过程中,我们经常会接触到“硬件加速”这个词。由于操作系统对底层软硬件封装非常完善,上层软件开发者往往对硬件加速的底层原理了解很少,也不清楚了解底层原理的意义,因此常会有一些误解,如硬件加速是不是通过特殊算法实现页面渲染加速,或是通过硬件提高CPU/GPU运算速率实现渲染加速。
本文尝试从底层硬件原理,一直到上层代码实现,对硬件加速技术进行简单介绍,其中上层实现基于Android 6.0。
Growing up is the only password.
在手机客户端尤其是Android应用的开发过程中,我们经常会接触到“硬件加速”这个词。由于操作系统对底层软硬件封装非常完善,上层软件开发者往往对硬件加速的底层原理了解很少,也不清楚了解底层原理的意义,因此常会有一些误解,如硬件加速是不是通过特殊算法实现页面渲染加速,或是通过硬件提高CPU/GPU运算速率实现渲染加速。
本文尝试从底层硬件原理,一直到上层代码实现,对硬件加速技术进行简单介绍,其中上层实现基于Android 6.0。
随着大数据时代的到来,机器学习成为解决问题的一种重要且关键的工具。不管是工业界还是学术界,机器学习都是一个炙手可热的方向,但是学术界和工业界对机器学习的研究各有侧重,学术界侧重于对机器学习理论的研究,工业界侧重于如何用机器学习来解决实际问题。我们结合美团在机器学习上的实践,进行一个实战(InAction)系列的介绍(带“机器学习InAction系列”标签的文章),介绍机器学习在解决工业界问题的实战中所需的基本技术、经验和技巧。本文主要结合实际问题,概要地介绍机器学习解决实际问题的整个流程,包括对问题建模、准备训练数据、抽取特征、训练模型和优化模型等关键环节;另外几篇则会对这些关键环节进行更深入地介绍。
下文分为1)机器学习的概述,2)对问题建模,3)准备训练数据,4)抽取特征,5)训练模型,6)优化模型,7)总结 共7个章节进行介绍。
随着美团交易规模的逐步增大,积累下来的业务数据和交易数据越来越多,这些数据是美团做为一个团购平台最宝贵的财富。通过对这些数据的分析和挖掘,不仅能给美团业务发展方向提供决策支持,也为业务的迭代指明了方向。目前在美团的团购系统中大量地应用到了机器学习和数据挖掘技术,例如个性化推荐、筛选排序、搜索排序、用户建模等等,为公司创造了巨大的价值。
本文主要介绍在美团的推荐与个性化团队实践中的数据清洗与特征挖掘方法。主要内容已经在内部公开课”机器学习InAction系列”讲过,本博客的内容主要是讲座内容的提炼和总结。
FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错的战绩。美团点评技术团队在搭建DSP的过程中,探索并使用了FM和FFM模型进行CTR和CVR预估,并且取得了不错的效果。本文旨在把我们对FM和FFM原理的探索和应用的经验介绍给有兴趣的读者。
在计算广告领域,点击率CTR(click-through rate)和转化率CVR(conversion rate)是衡量广告流量的两个关键指标。准确的估计CTR、CVR对于提高流量的价值,增加广告收入有重要的指导作用。预估CTR/CVR,业界常用的方法有人工特征工程 + LR(Logistic Regression)、GBDT(Gradient Boosting Decision Tree) + LR[1][2][3]、FM(Factorization Machine)[2][7]和FFM(Field-aware Factorization Machine)[9]模型。在这些模型中,FM和FFM近年来表现突出,分别在由Criteo和Avazu举办的CTR预测竞赛中夺得冠军[4][5]。
考虑到FFM模型在CTR预估比赛中的不俗战绩,美团点评技术团队在搭建DSP(Demand Side Platform)[6]平台时,在站内CTR/CVR的预估上使用了该模型,取得了不错的效果。本文是基于对FFM模型的深度调研和使用经验,从原理、实现和应用几个方面对FFM进行探讨,希望能够从原理上解释FFM模型在点击率预估上取得优秀效果的原因。因为FFM是在FM的基础上改进得来的,所以我们首先引入FM模型,本文章节组织方式如下:
首先介绍FM的原理。
其次介绍FFM对FM的改进。
然后介绍FFM的实现细节。
最后介绍模型在DSP场景的应用。
Online Learning是工业界比较常用的机器学习算法,在很多场景下都能有很好的效果。本文主要介绍Online Learning的基本原理和两种常用的Online Learning算法:FTRL(Follow The Regularized Leader)[1]和BPR(Bayesian Probit Regression)[2],以及Online Learning在美团移动端推荐重排序的应用。
外卖的排序策略是由机器学习模型驱动的,模型迭代效率制约着策略优化效果。如上图所示,在排序系统里,特征是最为基础的部分:有了特征之后,我们离线训练出模型,然后将特征和模型一起推送给线上排序服务使用。特征生产Pipeline对于策略迭代的效率起着至关重要的作用。经过实践中的积累和提炼,我们整理出一套通用的特征生产框架,大大节省开发量,提高策略迭代效率。