Atom是GitHub推出的一款编辑器, 被称为21世纪的黑客编辑器. 其主要的特点是现代, 易用, 可定制.
NIPS 2016:PPT of Andrew Ng
为了方便读者学习和收藏,雷锋网特地把吴恩达教授的PPT 做为中文版。
作者:雷锋网 亚峰
雷锋网(公众号:雷锋网)按:为了方便读者学习和收藏,雷锋网特地把吴恩达教授在NIPS 2016大会中的PPT做为中文版,由三川和亚峰联合编译并制作。
今日,在第 30 届神经信息处理系统大会(NIPS 2016)中,百度首席科学家吴恩达教授发表演讲:《利用深度学习开发人工智能应用的基本要点(Nuts and Bolts of Building Applications using Deep Learning)》。
此外,吴恩达教授曾在今年 9 月 24/25 日也发表过同为《Nuts and Bolts of Applying Deep Learning》的演讲(1小时20分钟),以下是 YouTube 链接:
Facebook PyTorch
作者:雷锋网 三川
本周,Facebook 的 AI 研究团队发布了一个 Python 工具包,专门针对 GPU 加速的深度神经网络(DNN)编程。它有望辅助、或在一定程度上替代,现有的 Python 数学、统计库(比如 NumPy)。它实现了机器学习框架 Torch 在 Python 语言环境的执行。开发团队表示,除 Facebook之外,它还已经被推特、卡内基梅隆大学和 Salesforce 等机构采用。
Advises of Rishabh Shukla on How to Train Deep Neural Network
作者:雷锋网
本文为印度深度学习专家、创业者 Rishabh Shukla 在 GitHub 上发表的长博文,总结了他过去的开发经验,旨在给新入门的开发者提供指导。雷锋网做了不改变原意的编译。
在深度学习领域,为了高效训练深度神经网络,有些实践方法被过来人强烈推荐。
在这篇博文中,我会覆盖几种最常使用的实践方法,从高品质训练数据的重要性、超参数(hyperparameters)到更快创建 DNN(深度神经网络) 原型模型的一般性建议。这些推荐方法中的大多数,已被学术界的研究所证实,并在论文中展示了相关实验、数学证据,比如 Efficient BackProp(Yann LeCun et al.) 和 Practical Recommendations for Deep Architectures(Yoshua Bengio)。
Concept and History of Brain Chips
你信不信有一天,硅工造的芯片会写诗?
作者:雷锋网:本文作者痴笑,矽说(微信号:silicon_talks)主笔。
你信不信有一天,硅工造的芯片会写诗?
如果信,
那说好的“诗三百,一言以蔽之,思无邪”,
还真的是“无邪”么?
如果不信,请读下面这一首:
脑芯编:窥脑究竟,织网造芯(一)
如果要给这诗一个赏析,大概可以是一个忧伤的故事。
天边云的变换复杂,而我却是半梦半醒,我在想一个人,想第一次和他相见,想他的风流倜傥,想他的英雄飒爽。
如果你是个文科生,或许你会嘲笑这首连平仄都不满足的劣质诗歌,韵脚也押的有些蹩脚,故事更是为赋新词强说愁。
如果你是理科男,或许对这种思春的小情怀不以为然。
不过,那是因为你们并没有看懂这首诗。
因为这诗暗藏了一个密码,藏着人工智能遇到摩尔定律后蹭出的火花。
另外,这诗不是人工智能的产物,只是矽说在这个人工智能横行的年代里特有的小情怀。
但可能在不远的将来,人工智能将会开车,会翻译,会调情,也会写下更美的篇章。想解开这个人工智能与集成电路的秘密?关注雷锋网(公众号:雷锋网)后期更新,我们一句一句地读下去。
Google RAISR
Google RAISR技术落地应用 可节约75%流量
谷歌在11月推出了一项新技术 RAISR,全称为“Rapid and Accurate Image Super-Resolution”,意即“快速、精确的超解析度技术”。RAISR利用机器学习将低分辨率图像转化为高分辨率图像。
RAISR首先制作较小版本的图像,使用传统方法将至拉伸,然后将拉伸后的模糊图像同原本的高分辨率图像进行对比。算法习得两者之间的差异,这允许它在保留图像的底层结构之上构建信息。